Implementations of two-photon four-qubit Toffoli and Fredkin gates assisted by nitrogen-vacancy centers

نویسندگان

  • Hai-Rui Wei
  • Pei-Jin Zhu
چکیده

It is desirable to implement an efficient quantum information process demanding fewer quantum resources. We designed two compact quantum circuits for determinately implementing four-qubit Toffoli and Fredkin gates on single-photon systems in both the polarization and spatial degrees of freedom (DoFs) via diamond nitrogen-vacancy (NV) centers in resonators. The gates are heralded by the electron spins associated with the diamond NV centers. In contrast to the ones with one DoF, our implementations reduce the quantum resource and are robust against the decoherence. Evaluations of fidelities and efficiencies of our gates show that our schemes may be implemented with current technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantu...

متن کامل

Universal quantum gates for hybrid system assisted by atomic ensembles embedded in double-sided optical cavities

We propose deterministic schemes for controlled-NOT (CNOT), Toffoli, and Fredkin gates between flying photon qubits and the collective spin wave (magnon) of an atomic ensemble inside double-sided optical microcavities. All the gates can be accomplished with 100% success probability in principle and no additional qubit is required. Atomic ensemble is employed so that light-matter coupling is rem...

متن کامل

Reversible Logic Synthesis with Minimal Usage of Ancilla Bits

Reversible logic has attracted much research interest over the last few decades, especially due to its application in quantum computing. In the construction of reversible gates from basic gates, ancilla bits are commonly used to remove restrictions on the type of gates that a certain set of basic gates generates. With unlimited ancilla bits, many gates (such as Toffoli and Fredkin) become unive...

متن کامل

On the CNOT-cost of the TOFFOLI gate

Three-input TOFFOLI gates are heavily used when performing classical logic operations on quantum data, e.g., in reversible arithmetic circuits. However, in physical implementations TOFFOLI gates are decomposed into six CNOT gates and several one-qubit gates. Though this decomposition has been known for at least 10 years, we provide here the first demonstration of its CNOT-optimality. We first p...

متن کامل

On the CNOT-cost of TOFFOLI gates

The three-input TOFFOLI gate is the workhorse of circuit synthesis for classical logic operations on quantum data, e.g., reversible arithmetic circuits. In physical implementations, however, TOFFOLI gates are decomposed into six CNOT gates and several one-qubit gates. Though this decomposition has been known for at least 10 years, we provide here the first demonstration of its CNOT-optimality. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016